2 research outputs found

    A run time adaptive architecture to trade-off performance for fault tolerance applied to a DVB on-board processor

    Get PDF
    Reliability is one of the key issues in space applications. Although highly flexible and generally less expensive than predominantly used ASICs, SRAM-based FPGAs are very susceptible to radiation effects. Hence, various fault tolerant techniques have to be applied in order to handle faults and protect the design. This paper presents a reconfigurable on-board processor capable of run-time adaptation to harsh environmental conditions and different functional demands. Run-time reconfigurability is achieved applying two different reconfiguration methodologies. We propose a novel self-reconfigurable architecture able to on demand duplicate or triplicate part of the design in order to form DMR and TMR structures. Moreover, we introduce two different approaches for voting the correct output. The first one is a traditional voter that adapts to different DMR/TMR domain positions whereas the second implies comparing the captured flip-flop values directly from the configuration memory read through ICAP. The comparison is done periodically by an embedded processor thus completely excluding the voting mechanism in hardware. The proposed run-time reconfiguration methodology provides savings in terms of device utilization, reconfiguration time, power consumption and significant reductions in the amount of rad-hard memory used by partial configurations

    Analysis of design alternatives on using dynamic and partial reconfiguration in a space application

    Get PDF
    Some of the biggest concerns in space systems are power consumption and reliability due to the limited power generated by the system's energy harvesters and the fact that once deployed, it is almost impossible to perform maintenance or repairs. Another consideration is that during deployment, the high exposure to electromagnetic radiation can cause single event damage effects including SEUs, SEFIs, SETs and others. In order to mitigate these problems inherent to the space environment, a system with dynamic and partial reconfiguration capabilities is proposed. This approach provide s the flexibility to reconfigure parts of the FPGA while still in operation, thus making the system more flexible, fault tolerant and less power-consuming. In this paper, several partial reconfiguration approaches are proposed and compared in terms of device occupation, power consumption, reconfiguration speed and size of memory footprints
    corecore